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Abstract:An analytical method is developed,using ray theory, to determine the interior acoustic field in an 

embedded fluid layer excited by an obliquely incident plane acoustic wave. The magnitude and phase of the field 

are shown to be correct by comparison with wave theory results. The method can be extended to analyze the 

pressure field inside sonar domes. 

Index Terms:acoustic field; ray theory; wave theory; sonar domes; 

 

I. Introduction 

The acoustic pressure field inside a sonar dome ensonified by a plane wave is of interest. The dome is 

comprised of a thin shell filled with water. In ships, the dome is filled with fresh-water. The dome is used to 

protect the sonar array inside the dome from physical damage and noise due to flow over the dome. The 

thickness of the dome is much less than the wavelength of the acoustic wave and the transmission coefficient is 

high. Therefore, it is neglected in this study. In this paper, ray theory is used to determine the acoustic field 

inside a thin fluid layer embedded in an infinite fluid. It is excited by a plane acoustic wave that is obliquely 

incident on it. The effect of multiple reflections and transmissions at the interfaces is included. Therefore, good 

agreement is obtained with results obtained using wave theory. This work was done at Naval Physical and 

Oceanographic Lab., Kochi, 682021.Fathima Shirin K.M is a second year M.Tech. student at CASAD, Dept. of 

Ship Technology, CUSAT, Kochi, Kerala, 682022 (e-mail: ftmashirin@gmail.com).Jobeena Thomas is a Senior 

Research Fellow at Naval Physical and Oceanographic Lab., Thrikkakra, Kochi 682021(e-mail: 

jobeenathomask@gmail.com). Dr. KP Narayanan is Associate Professor at CASAD, Dept. of Ship Technology, 

CUSAT, Kochi, Kerala, 682022.Dynamic analysis of sonar domes can be done using FEM or BEM but the 

number of degrees of freedom is very large because the dome size is very much more than the wavelength in 

water. Therefore it is proposed to use ray theory to analyze the dome. Analysis of the thin fluid layer is a first 

step in this direction. 

 

II. Thin Fluid Layer 
Wave Approach 

Consider a thin fluid layer with boundaries at x = a andx = b as shown in Fig.1. A wave from an object 

that is very far away and is nearly plane when it reaches the layer (dome) is incident on the boundary at x=a. 

The incident wave is partly reflected and partly transmitted into the layer. The transmitted waveis partly 

reflected and partly transmitted whenever it meets an interface. The pressure inside the layer is of interest.The 

densities of the three fluidsin Fig. 1 are ρ1,ρ2 and ρ3, respectively and the speeds of sound in them are c1,c2, and 

c3, respectively. 
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Fig. 1. Thin fluid layer at oblique incidence. 

 

Governing Equations 

Consider an acoustic wave incident obliquely on the fluid layer. The angular frequency of the wave is 

ω and it makes an angle 𝜃1with respect to the x axis. Part of the wave is reflected at the interface x = a. Part of 

the wave gets transmitted through the layer and exits into fluid 3 at an angle 𝜃3. Within the layer, standing 

waves are generated by two waves: one travelling from left to right along the +x axis and another travelling 

from right to left along the –x axis.  

The acoustic pressure in the incident wave and the reflected wave are expressed as (Kinsler et al.) 

 

 𝑝𝑖 = 𝑃𝑖𝑒
𝑗 (𝜔𝑡−γ1𝑥−ζ1𝑦)       (1) 

 

 𝑝𝑟 = 𝑃𝑟𝑒
𝑗 (𝜔𝑡 +γ1𝑥−ζ1𝑦)      (2) 

where t denotes time, and𝑘i = ω/ci, 𝑘i cos 𝜃i = γ
i
, and 𝑘i sin 𝜃i = ζ

i
 for i = 1, 2, 3.  

The pressures in the waves travelling to the right and to the left within the fluid layer are expressed as  

 

 𝑝𝑎 = 𝐴𝑒𝑗 (𝜔𝑡−γ2𝑥−ζ2𝑦)       (3) 

 

 𝑝𝑏 = 𝐵𝑒𝑗 (𝜔𝑡+γ2𝑥−ζ2𝑦)      (4) 

respectively. The pressure in fluid 3 is expressed as: 

 

 𝑝𝑡 = Pt𝑒
𝑗 (𝜔𝑡−γ3𝑥−ζ3𝑦)       (5) 

 

In the above,𝑃𝑖 is the amplitude of the incident wave,  𝑃𝑟  is the amplitude of the reflected wave at the 

first interface, 𝐴 and 𝐵are the amplitudes of the waves within the layer and  𝑃𝑡  is the amplitude of the 

transmitted wave at the second interface 

 

Continuity Conditions 

When a wave passes through the interface between different media, pressure and velocity are 

continuous at the interface. These two continuity conditions, at the interfaces at x = a and x = b, are used to 

determine the coefficients Pr, A, B, and Ptas described below. 

Acoustic pressures on both sides of the boundary must be equal. At first interface i.e.at x=a, 

 

 𝑝𝑖 + 𝑝𝑟 =  𝑝𝑎 +  𝑝𝑏        (6) 

Substituting Eqs. (1) to (4) in (6) yields  

 

 −𝑃𝑟𝑒
𝑗 γ1a + 𝐴𝑒−𝑗 γ2a + 𝐵𝑒𝑗 γ2a =  𝑃𝑖𝑒

−𝑗 γ1a   (7) 

At the second interface i.e. at x=b, 

𝜃2 𝜃3 

𝑥 = 𝑎 

 

𝑥 = 𝑏 

 

𝜃2 

𝜃1 

𝜃2 

Fluid 2 Fluid 3  Fluid 1 
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 𝑝𝑎 +  𝑝𝑏 =  𝑝𝑡         (8) 

Substituting Eqs. (3) to (5) in (8) yields  

  𝐴𝑒−𝑗 γ2b + 𝐵𝑒𝑗 γ2b−𝑃𝑡𝑒
𝑗 γ3b =  0    (9) 

The normal components of the particle velocities on both sides of the boundary are equal. At the first interface 

i.e. x=a, 

 𝑢𝑖 +  𝑢𝑟 =  𝑢𝑎 + 𝑢𝑏        (10) 

The normal component of the particle velocity is given by, 

 

 𝑢 =
𝑝

𝜌𝑐
cos 𝜃         (11) 

On substituting for each of these the resulting equation will be, 

 

 𝑃𝑟𝑒
𝑗 𝛾1𝑎 + 𝐴ℜ𝑒−𝑗𝛾2𝑎 − 𝐵ℜ𝑒𝑗 𝛾2𝑎 =  𝑃𝑖𝑒

−𝑗𝛾1𝑎   (12) 

 

where ℜ =
𝑟1

𝑟2

cos 𝜃2 

cos 𝜃1 
 .    

At the second interface, i.e. at x=b, 

 𝑢𝑎 + 𝑢𝑏 =  𝑢𝑡         (13)    

The resulting equation is, 

 −𝐴𝑒−𝑗𝛾2𝑏 + 𝐵𝑒𝑗 𝛾2𝑏 +  𝑃𝑡ℛ𝑒𝑗 𝛾3𝑏 =  0    (14) 

      

where ℛ =
𝑟2

𝑟3

cos 𝜃3 

cos 𝜃2 
. 

Combining all the continuity conditions and expressing them in matrix form yields  

 

−𝑒𝑗 γ1a 𝑒−𝑗 γ2a

0 𝑒−𝑗 γ2b
𝑒𝑗 γ2a 0
𝑒𝑗 γ2b −𝑒−𝑗 γ3b

𝑒𝑗 γ1a ℜ𝑒−𝑗 γ2a

0 −𝑒−𝑗 γ2b
−ℜ𝑒𝑗 γ2a 0
𝑒𝑗 γ2b ℛ𝑒−𝑗 γ3b

  

𝑃𝑟
𝐴
𝐵
𝑃𝑡

 =  

𝑒−𝑗 γ1a

0
𝑒−𝑗 γ1a

0

  (15) 

This equation is easily solved analytically or by using MATLAB.  

 

Special Cases 

The equations obtained using the above general approach are solved for a few special cases. The 

answers that are obtained are expected and give confidence that the equations are correct.  

1. Homogenous medium. For 𝑟1 =  𝑟2 =  𝑟3  where  𝑟𝑖 = 𝜌𝑖𝑐𝑖 , i = 1, 2, 3, the solution to Eq. (15) is 𝑃𝑟  = 0, B = 0, 

A  = 1,𝑃𝑡= 1 for any angle of incidence. This is expected as there is no reflection when a wave propagates 

through a homogenous medium.   

2. Normal incidence. For 𝜃1= 0, Kinsler et al (1982)
[4]

  present  

the solution to Eq. (15). The same result is obtained by solving Eq. (15) for arbitrary values of  𝑟𝑖 , i = 1, 2, 3.  

3. Power. There is no power dissipation in the fluid. Therefore, the sum of the reflected and transmitted powers 

should be equal to the incident power. This is expressed as 

 R𝜋 + T𝜋 = 1       (16) 

where Rπ is the power reflection coefficient and Tπ is the power transmission coefficient. These coefficients are 

expressed as 

Rπ =  𝑅 2 

Tπ =  
At

Ai

r1

r2

 𝑇 2 

where 𝑅 = 𝑃𝑟/𝑃𝑖  is the pressure reflection coefficient and 𝑇 = 𝑃𝑡/𝑃𝑖  is the pressure transmission coefficient. 

The power transmission coefficients are computed by using the solutions to Eq. (15) and it is found that Eq. (16) 

is valid in all cases. 

4. Comparison with reflection and transmission coefficients explained by Brekhovskikh(1980)
[1]

 for waves in 

layered media and found out that the results are similar 

 

Ray Approach 

Consider a thin fluid layer with boundaries at x=a and x=b. The density of fluid above the interface, 

inside the fluid layer and below the interface is 𝜌1,𝜌2 and 𝜌3respectively and speed of sound in the fluid leftto 
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the interface 1, inside the fluid layer and right to the interface 2 is 𝑐1,𝑐2and 𝑐3respectively.Here the fluid left and 

right to the layer is taken as having similar properties. So 𝜌1=𝜌3 and 𝑐1= 𝑐3. 

A ray is incident on the first interface i.e.  at x=a of the fluid layer will get partially reflected and 

partially get transmitted. The transmitted ray again get reflected and transmitted whenever it meets the interface, 

and this process continues whenever the ray meets the interface. The total up-travelling signal is the sum of 

infinite number of partial reflections and transmissions. The pressure reflection and transmission coefficients are 

given by Clay and Medwin (1977)
[2] 

. 

 

 𝑅12  =  
𝜌2𝑐2 cos 𝜃1−𝜌1𝑐1 cos 𝜃2

𝜌2𝑐2 cos 𝜃1+𝜌1𝑐1 cos 𝜃2
    (17) 

 

 𝑇12  =
2𝜌2𝑐2 cos 𝜃1

𝜌2𝑐2 cos 𝜃1+𝜌1𝑐1 cos 𝜃2
     (18) 

 

 𝑅23  =
𝜌3𝑐3 cos 𝜃2−𝜌2𝑐2 cos 𝜃3

𝜌3𝑐3 cos 𝜃2+𝜌2𝑐2 cos 𝜃3
     (19) 

 

 𝑇23  =
2𝜌3𝑐3 cos 𝜃2

𝜌3𝑐3 cos 𝜃2+𝜌2𝑐2 cos 𝜃3
     (20) 

 

 𝑅12 = −𝑅21        (21) 

 

 𝑇12𝑇21 = 1 − 𝑅12
2      (22) 

 

 

 

Since the first and last medium are the same,   𝑅12 = −𝑅23 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Traced rays inside the fluid layer with oblique incident ray 

 

Considering the case with origin on the point of incidence at the first interface i.e. x = a and second 

interface is at x = b, here taken a=0, b=h where h = b - a. 

Considering a wave front passing through the origin under consideration i.e. at the point of incidence, 

wave front is defined as the surface on which phase is constant. It therefore follows that the wave front, in 2D 

space, at any instant of time, is a straight line. Wave front is drawn perpendicular to the direction of travel of the 

rays. In general, the potential of n
th

 ray is given by, 

 ∅𝑛 = 𝐴𝑛𝑒
𝑗 (𝜔𝑡 +𝑘1𝝃𝒏−𝜂𝑛 )    (23) 

where An  represents the amplitude of the ray and  ωt + k1ξ
n
− η

n
  represents the phase of the ray. The time-

dependence, 𝑒𝑗 (𝜔𝑡 ), is present in all the following equations but is suppressed for convenience, 𝜉𝑛  is the path not 

𝜃2 

𝜃3 

𝜃3 

𝜃2 𝜃2 

𝜃1 𝜃1 

𝜃1 
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travelled by the nth ray from the origin and 𝜂𝑛  is the phase term indicating extra path travelled by the nth ray 

from the origin.Phase of the ray is expressed in a local coordinate system and the x axis of the local coordinate 

system is along the ray direction. 

 

Reflection Coefficient At The First Interface 

For calculating the reflection coefficient at the first interface, consider all the rays that are travelling 

back to fluid 1 from the first interface. i.e. R1, R2, R3, R4 from the Fig.3. R1 is the ray which is reflected back to 

fluid 1 when incident ray strikes on the interface 1. R2ray undergoes one transmission at interface 1 (to fluid 

2),one reflection at interface 2 (in fluid 2),one transmission at interface 1 (to fluid 1).R3 ray undergoes one 

transmission at interface 1 (to fluid 2),two reflections at interface 2 (in fluid 2), one reflection at interface 1 (in 

fluid 2),one transmission at interface 1 (to fluid 1). 

Consider the wave front perpendicular to these rays which pass through the origin under consideration. 

In general the potential of the rays travelling back from the first interface can be written as, for n
th

 ray,  

 ∅𝑛𝑎𝑟 = 𝐴𝑛𝑟 𝑒
𝑗 (𝜔𝑡+𝑘1𝝃𝒏−𝜂𝑛 )     (24) 

Total reflection is given by the sum of potentials of all the rays travelling back to fluid 1 from the first 

interface. i.e. taken as 𝑅13 

 𝑅13 =   ∅R1 +  ∅R2 + ∅R3 + ⋯……………∞ (25) 

where, 

∅R1 =  𝑅12𝑒
𝑗 (𝜔𝑡 +𝑘1𝝃𝟎−𝜂0), potential corresponding to R1, 

∅R2 = 𝑇12𝑅23𝑇21 𝑒
𝑗 (𝜔𝑡+𝑘1𝝃𝟏−𝜂1),potential corresponding to R2, 

∅R3 =  𝑇12𝑅23
2𝑇21 𝑅21𝑒

𝑗 (𝜔𝑡 +𝑘1𝝃2−𝜂2), potential corresponding to R3, 

The path not travelled by the ray R1 from origin (shown as thicker lines) is given by, 𝜉0 = 0, since the ray R1 

passes through origin. Path not travelled by R2 from origin is obtained as,  

𝜉1 = 2ℎ tan 𝜃2 sin 𝜃1, by performing angle calculations.  

Similarly for R3, 

 𝜉2 = 4ℎ tan 𝜃2 sin 𝜃1. 

 

 

In general for an n
th

 ray, 

 

 𝜉𝑛 = 2ℎ tan 𝜃2 sin 𝜃1 𝑛      (26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Ray path for the reflected rays from the first interface 
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The phase term indicating extra path travelled by the ray R1 from origin is given by, 𝜂0 = 0, since the 

ray R1 passes through origin. Thephase term indicating extra distance travelled by R2 from origin is obtained as, 

𝜂1= 𝑘2
2ℎ

cos 𝜃2
.Similarly for R3, 𝜂2= 𝑘2

4ℎ

cos 𝜃2
. 

In general for an n
th

 ray, 

 𝜂𝑛 = 𝑘2
2ℎ

𝑐𝑜𝑠 𝜃2
𝑛        (27) 

Combining these values, we can formulate a general expression, 

 𝑘1𝜉𝒏 − 𝜂𝑛 = −2𝑘2ℎ 𝑐𝑜𝑠 𝜃2𝑛     (28) 

The summation series above, will formulate a geometric series from the second term. The common ratio of the 

series is 𝑅23𝑅21𝑒
−𝑗2𝑘2ℎ cos 𝜃2 . Using the geometric series summation formulae we can derive a single expression 

which will give the value of 𝑅13 . 

 𝑅13 =
𝑅12 +𝑅23𝑒

−𝑗2𝑘2ℎ cos 𝜃2

1+𝑅12𝑅23𝑒
−𝑗2𝑘2ℎ cos 𝜃2

      (29) 

 

Transmission Coefficient At The First Interface 

For calculating the transmission coefficient at the first interface, consider all the rays that are travelling 

to fluid 2 from the first interface, i.e. A1, A2, A3, A4 from the Fig 4. A1 is the ray which is transmitted to fluid 2 

when incident ray strikes on the interface 1. A2 ray undergoes one transmission at interface 1 (to fluid 2),one 

reflection at interface 2 (in fluid 2),and one reflection at interface 1 (in fluid 2). A3 ray undergoes one 

transmission at interface 1 (to fluid 2),two reflections at interface 2 (in fluid 2), two reflections at interface 1 (in 

fluid 2). 

Consider the wave front perpendicular to these rays which pass through the origin under consideration. 

In general the potential of the rays travelling from the first interface to fluid 2 can be written as, for n
th

 ray,  

 ∅𝑛𝑎𝑡 = 𝐴𝑛𝑡 𝑒
𝑗 (𝜔𝑡+𝑘1𝝃𝒏−𝜂𝑛 )      (30) 

Total transmission is given by the sum of all potentials of all the transmitted rays from first interface to fluid 2 at 

the wave front, i.e. 𝐴12 . 

 𝐴12  =   ∅A1 +  ∅A2 + ∅A3 + ⋯…………∞  (31)  

where, 

∅A1 =  𝑇12𝑒
𝑗 (𝜔𝑡+𝑘1𝝃𝟎−𝜂0), potential corresponding to A1, 

∅A2 = 𝑇12𝑅23𝑅21 𝑒
𝑗 (𝜔𝑡 +𝑘1𝝃𝟏−𝜂1), potential corresponding to A2, 

∅A3 =  𝑇12𝑅23
2𝑅21

2𝑒𝑗 (𝜔𝑡 +𝑘1𝝃2−𝜂2) , potential corresponding to A3, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Ray path for the transmitted rays from the first interface 
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The path not travelled by the ray A1 from origin (shown in dark lines) is given by, 𝜉0 = 0, since the ray 

A1 passes through origin. Path not travelled by A2 from origin is obtained as,  

𝜉1 = 2ℎ tan 𝜃2 sin 𝜃1, by performing some angle calculations.  

Similarly for A3, 

 𝜉2 = 4ℎ tan 𝜃2 sin 𝜃1. 

In general for an n
th

 ray, 

 𝜉𝑛 = 2ℎ tan 𝜃2 sin 𝜃1 𝑛      (32) 

The phase term indicating extra path travelled by the ray A1 from origin is given by, 𝜂0 = 0, since the ray A1 

passes through origin. The phase term indicating extra distance travelled by A2 from origin is obtained as, 

𝜂1= 𝑘2
2ℎ

cos 𝜃2
.Similarly for A3, 𝜂2= 𝑘2

4ℎ

cos 𝜃2
. 

In general for an n
th

 ray, 

 𝜂𝑛  =  𝑘2
2ℎ

cos 𝜃2
n        (33) 

Combining these values, we can formulate a general expression, 

 𝑘1ξ
n
− 𝜂𝑛 = −2𝑘2h cos 𝜃2n      (34) 

The summation series above, will formulate a geometric series from the first term. The common ratio 

of the series is 𝑅23𝑅21𝑒
−𝑗2𝑘2ℎ cos 𝜃2 . Using the geometric series summation formulae we can derive a single 

expression which will give the value of 𝐴12 . 

 𝐴12 =  
𝑇12

1+𝑅23𝑅12𝑒
−𝑗2𝑘2ℎ cos 𝜃2

      (35) 

 

Reflection Coefficient At The Second Interface 

For calculating the transmission coefficient at the second interface, consider all the rays that are 

travelling to fluid 2 from the second interface, i.e. B1, B2, B3, B4 from the Fig 5.B1 is the ray which is reflected to 

fluid 2 after undergoing a transmission from interface1 when incident ray strikes on the interface 1. B2 ray 

undergoes one transmission at interface 1 (to fluid 2), two reflections at interface 2 (in fluid 2),one reflection at 

interface 1 (in fluid 2). B3 ray undergoes one transmission at interface 1 (to fluid 2),three reflections at interface 

2 (in fluid 2), and two reflections at interface 1 (in fluid 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Ray path for the reflected rays from the second interface 
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Consider the wave front perpendicular to these rays passing through the first point of reflection in 

interface2. In general the potential of the rays travelling from the second interface to fluid 2 can be written as, 

for n
th

 ray,  

 ∅𝑛𝑏𝑟 = 𝐵𝑛𝑟 𝑒
𝑗 (𝜔𝑡+𝑘2𝜉𝑛 +𝑘2x−𝜂𝑛 )     (36) 

Total reflection is given by the sum of all potentials of all the reflected rays from second interface to fluid 2 at 

the wave front, i.e. 𝐵23 . 

 𝐵23  = ∅B1 + ∅B2 + ∅B3 + ⋯…………… ∞  (37) 

where, 

∅B1 =  𝑇12𝑅23𝑒
𝑗 (𝜔𝑡 +𝑘2𝜉0+𝑘2𝑥−𝜂0), potential corresponding to B1 

∅B2 = 𝑇12𝑅23
2𝑅21 𝑒

𝑗 (𝜔𝑡+𝑘2𝜉1 +𝑘2𝑥−𝜂1),potential corresponding to B2 

∅B3 =  𝑇12𝑅23
3𝑅21

2𝑒𝑗 (𝜔𝑡 +𝑘2𝜉2+𝑘2𝑥−𝜂2)potential corresponding to B3 

Since in this case we considered the wave front at a local point i.e. at the first point of reflection, we 

need to shift it to the point of incidence of the ray at interface 1.For this we need to move the wave front parallel 

so that it should pass through the origin we considered in the above cases. On doing this there comes a constant 

shift of all points at which the rays intersects the wave front and that is denoted as  𝑥.The path not travelled by 

the ray B1 from origin is given by,𝜉0 = 0, since the ray B1 passes through origin. Path not travelled by B2 from 

origin is obtained as,  

𝜉1 = 2ℎ tan 𝜃2 sin 𝜃3𝑛, by performing angle calculations.  

Similarly for A3, 

 𝜉2 = 4ℎ tan 𝜃2 sin 𝜃3𝑛. 

In general for an n
th

 ray, 

  ξ
n

= 2ℎ tan 𝜃2 sin 𝜃3𝑛       (38) 

The phase term indicating extra path travelled by the ray B1 from origin is given by, 𝜂0 = 
𝑘2ℎ

cos 𝜃2
. The 

phase term indicating extra distance travelled by B2 from origin is obtained as, 

𝜂1= 𝑘2
3ℎ

cos 𝜃2
.Similarly for A3, 𝜂2= 𝑘2

5ℎ

cos 𝜃2
. 

In general for an n
th

 ray, 

 𝜂𝑛  =  
(2𝑛+1)𝑘2ℎ

cos 𝜃2
        (39) 

𝑥0 can be computed by performing angle calculations and it is given by, 

 x =
ℎ

cos 𝜃2
cos 2𝜃2        (40) 

Combining these values, we can formulate a general expression, 

 𝑘2𝜉𝑛 + 𝑘2x − 𝜂𝑛 =  −2𝑘2ℎ cos 𝜃2 𝑛 −
𝑘2ℎ

cos 𝜃2
(1 + cos 2 𝜃2)            (41) 

The summation series above, will formulate a geometric series from the first term. The common ratio of the 

series is 𝑅23𝑅21𝑒
−𝑗2𝑘2ℎ cos 𝜃2 . Using the geometric series summation formulae we can derive a single expression 

which will give the value of 𝐵23 . 

 𝐵23 =
𝑇12𝑅23𝑒

−𝑗
𝑘2ℎ

cos 𝜃2
(1+cos 2𝜃2)

1+𝑅23𝑅12𝑒
−𝑗2𝑘2ℎ cos 𝜃2

     (42) 

 

Transmission Coefficient At The Second Interface 

For calculating the transmission coefficient at the second interface, consider all the rays that are 

travelling to  fluid 3 from the second interface, i.e. T1, T2, T3, T4 from the Fig.6. 

T1 is the ray generated when incident ray strikes on the interface 1,getting transmitted to fluid 2, which is again 

transmitted to fluid 3. T2 ray undergoes one transmission at interface 1 (to fluid 2),one reflection at interface 2 

(in fluid 2),one reflection at interface 1 (in fluid 2),one transmission at interface 2 (to fluid 3). T3 ray undergoes 

one transmission at interface 1 (to fluid 2),two reflections at interface 2 (in fluid 2), two reflections at interface 1 

(in fluid 2), and one transmission at interface 2 (to fluid 3). 

Consider the wave front perpendicular to these rays passing through the first point of transmission at  

interface2. In general the potential of the rays travelling from the second interface to fluid 3 can be written as, 

for n
th

 ray,  

 ∅𝑛𝑏𝑡 = 𝐵𝑛𝑡 𝑒
𝑗 (𝜔𝑡+𝑘2𝝃𝒏−𝑘3𝑥0−𝜂𝑛 )     (43) 

Total transmission is given by the sum of all potentials of all the transmitted rays from second interface to fluid 

3 at the wave front, i.e. 𝑇12 . 
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 𝑇12 = ∅T1 +  ∅T2 + ∅T3 + ⋯…………… ∞  (44) 

where, 

∅B1 =  𝑇12𝑇23𝑒
𝑗 (𝜔𝑡 +𝑘2𝜉0−𝑘3𝑥0−𝜂0), potential corresponding to T1 

∅B2 = 𝑇12𝑅23 𝑅21𝑇23𝑒
𝑗 (𝜔𝑡 +𝑘2𝜉1−𝑘3𝑥0−𝜂1),potential corresponding to T2 

∅B3 =  𝑇12𝑅23
2𝑅21

2𝑇23𝑒
𝑗 (𝜔𝑡+𝑘2𝜉2−𝑘3𝑥0−𝜂2),potential corresponding to T3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Ray path for the transmitted rays from the second interface 

 

Since in this case we considered the wave front at a local point i.e. at the first point of transmission, we 

need to shift it to the point of incidence of the ray at interface 1.For this we need to move the wave front parallel 

so that it should pass through the origin we considered in the first two cases. On doing this there comes a 

constant shifts of all points at which the rays intersects the wave front and that is denoted as  𝑥0. 

The path not travelled by the ray T1 from origin is given by, 𝜉0 = 0, since the ray T1 passes through origin. Path 

not travelled by T2 from origin is obtained as,  

𝜉1 = 2ℎ tan 𝜃2 sin 𝜃3𝑛, by performing angle calculations.  

Similarly for T3, 

 𝜉2 = 4ℎ tan 𝜃2 sin 𝜃3𝑛. 

In general for an n
th

 ray, 

  ξ
n

= 2ℎ tan 𝜃2 sin 𝜃3𝑛       (45) 

The phase term indicating extra path travelled by the ray T1 from origin is given by, 𝜂0 = 
𝑘2ℎ

cos 𝜃2
. The phase term 

indicating extra distance travelled by T2 from origin is obtained as, 

𝜂1= 𝑘2
3ℎ

cos 𝜃2
.Similarly for T3, 𝜂2= 𝑘2

5ℎ

cos 𝜃2
. 

In general for an n
th

 ray, 

 𝜂𝑛  =
(2𝑛+1)𝑘2ℎ

cos 𝜃2
 (46) 

𝑥1 can be computed by performing angle calculations and it is given by, 

       𝑥0 =
ℎ

cos 𝜃2
cos(𝜃3 − 𝜃2)       (47) 

Combining these values, we can formulate a general expression, 

𝑘2𝜉𝑛 − 𝑘3𝑥0 − 𝜂𝑛 = −2𝑘2ℎ cos 𝜃2 𝑛 − 𝑘2
ℎ

cos 𝜃2
+ 𝑘3

ℎ

cos 𝜃2
cos(𝜃3 − 𝜃2)            (48)  

The summation series above, will formulate a geometric series from the first term. The common ratio of the 

series is 𝑅23𝑅21𝑒
−𝑗2𝑘2ℎ cos 𝜃2 . Using the geometric series summation formulae we can derive a single expression 

which will give the value of 𝑇23 . 
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 𝑇13 =
𝑇12𝑇23𝑒

−𝑗
ℎ

cos 𝜃2
(𝑘2−𝑘3 cos (𝜃3−𝜃2))

1+𝑅23𝑅21𝑒
−𝑗2𝑘2ℎ cos 𝜃2

    (49) 

 

Numerical Results And Discussions 

Numerical results are presented to illustrate the  pressure field for case of 𝑓 = 10 kHz, 𝑃𝑖 = 1 Pa, 𝜌1 = 

1000 kg/m3, 𝑐1= 1500 m/s, 𝜌2 = 1100 kg/m3, and 𝑐2= 1650 m/s, 𝜌3 = 𝜌1, 𝑐3=𝑐1 ,The angle of incidence is 30 

degrees. The interface is at 𝑥 =  0 and 𝑥=1. Dots and lines are used to show wave theory and ray theory results. 

The continuous solid lines indicate the wave theory results and circled lines indicate ray theory results.  

The values obtained from the wave approach Pr, A, B and Pt are compared with R12,A12,B23, and T23 

respectively and it is found that both the values are equal in phase and magnitude. This shows that the ray 

approach is accurate in this case. 

 

 
Fig 7 Variation of reflection coefficient(real part) at the first interface with the frequency 

 

 
Fig 8  Variation of sum of the reflection and transmission coefficients (real part) inside the fluid layer 

with frequency 
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Fig 9 Variation of transmission coefficient (real part) at the second interface with the frequency 

 

III. Conclusion 

Our problem of interest is a Sonar dome which is comprised of a thin 3D shell filled with fresh water 

and operates at sea.As an initial problem, a simple case of 2D fluid layer is considered with interfaces at x=a and 

x=b and the reflection and transmission through the layer is found out using ray analysis. The phase term of the 

ray was not explained by Clay and Medwin
[2]

  and his calculations were based on a local coordinate system. The 

results based on his approach didn’t give good agreement with the wave analysis results. The phase of each ray 

is then computed in a global coordinate system which is then verified with wave approach. 
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